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Abstract

The aim of this investigation is to construct an adaptive observer and an adaptive compensator
for a class of infinite-dimensional plants having a known exogenous input and a structured pertur-
bation with an unknown constant parameter, such as the case of static output feedback with an
unknown gain. The adaptive observer uses the nominal dynamics of the unperturbed plant and an
adaptation law based on the Lyapunov redesign method. We obtain conditions on the system to en-
sure uniform boundedness of the estimator dynamics and the parameter estimates, and convergence
of the estimator error. For the case of a known periodic exogenous input we design an adaptive
compensator which forces the system to converge to a unique periodic solution. We illustrate our
approach with a delay example and a diffusion example for which we obtain convincing numerical
results.

1 Introduction

In this paper, we construct adaptive observers for the following class of infinite-dimensional
systems on a given Hilbert space X with inner product and norm (-, -) and |-| x, respectively:

%a:(t) = Apz(t) + Bu(t) + f(t); z(0) =20 € X (1.1)
y(t) = Cz(t), (1.2)

where
Ap = Ag+ BI'C (1.3)

and Ay is a generator of an exponentially stable Cy-semigroup T'(t), i.e. there exist constants
M, 1 > 0 such that
IT(t)| < MeH. (1.4)

The signals u(t) and y(t) are the vector-valued inputs and outputs, respectively. f(t) is
an X-valued known exogenous input and B € L(C™, X), C € L(X,C ™). Consequently,
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A, generates a strongly continuous Cy-semigroup for any I' and the system is well-posed.
A key assumption is that the original system (Ag, B, C) satisfy a positive-real condition,
where by positive-real we mean the following.

Definition 1.1 Suppose that G(-) : € § — L(C™), where €§ = {s: Res > 0}. If
(i)  G(s) = G(); (1.5)
(11) s) is holomorphic on €§ 1.6
(144) s)+G(s)*>0 foralls-yw w € R,

then G is positive-real.

In fact, we require that G(s — pu) = C ((s — u)I — Ag) * B be positive-real for some p > 0.
The motivation is that the perturbation BI'C' arises as the unknown constant gain in
the feedback law u = I'y. Thus, the actual formulation is

z(t) = Aoz (t) + BTy(t) + Bu(t) + f(t); z(0) = zg. (1.8)

Some preliminary results on adaptive observers of this type were given in Demetriou and
Ito [10], but they only applied to exponentially stable, dissipative systems (Ag+Af < —2ul)
under a co-location assumption: B = C*. In this case, G(s — u) is automatically positive-
real. In Curtain, Demetriou and Ito [6], the co-location assumption was circumvented by
appealing to a (very special version) of the positive-real lemma. Unfortunately, this version
only applies to a system for which Ay is self-adjoint, exponentially stable, and the inputs and
outputs are scalar-valued. In this paper, we introduce a third type of positive-real lemma,
based on recent results in Curtain [5]. Although there are many results on the positive-real
lemma in the infinite-dimensional literature (see [21],[22],[23],[24], and [25],[26],]27]), most
are in terms of a certain Riccati equation. For our application, we need the following singular
version, for which no corresponding Riccati equation exists. We require the existence of
operators @ € £(X) and L : X — € ™ such that for z € D(A)

A*Qzr + QAz = —L*Lx (1.9)
B*Qz = Cr. (1.10)

The earlier results in the literature are too restrictive for our application. Balakrishnan [1]
assumes that A is Riesz-spectral and that the scalar inputs and outputs are very smooth;
both Curtain [3, 4] and Pandolfi [17] require exact controllability, which is never satisfied
by our class of systems. In the recent results by Curtain [5] and Pandolfi [18], the lat-
ter assumption is removed and [5] provides the type of positive-real lemma suited to our
application.

In section 2, we summarize and compare three distinct versions of the positive-real
lemma from [10], [6] and [5]. In [10] and [6] the L-operator maps from X to X, in contrast
to the situation in the usual positive-real lemma, where L maps from X to € ™. We discuss
three examples which satisfy at least one of the three versions of the positive-real lemma.

In section 3, we propose the following adaptive observer for the structurally perturbed
system (1.9) with the observation (1.2) under the assumption that G(s —p) = C((s —p)I —
Ap) 1B is positive-real for some p > 0.

Z(t) = ApZ(t) + Bu(t) + BL(@®)y(t) + f(t); #(0) =T (1.11)

(1) = GCe(t)yT(t); T(0) = T (1.12)



0 < G = G7T is an adaptation matrix gain and we only require that f be locally Bochner
integrable. The main result is that if u,y € Leo(0,00; © ™), then I'(t) and Z(t) and the
observation error e(t) = x(t) — Z(t) are bounded in norm for ¢ > 0 and ||e%tQ%(w(t) -
Z(t))||x — 0 as t — oo, where @ is the operator in the positive-real lemma (1.9) with A =
Ag+pl. If Q is invertible or if y € LooNLa(0, 00; © ™), we obtain ||e2!(z(t) —Z(t))||x — 0 as
t — oo. Under a persistently exciting type condition we can achieve parameter convergence:
I'(t) > T as t — .
In section 4, we propose an adaptive compensator design using the separation scheme

u(t) = us(t) = T(2)y(t) (1.13)
and using an LQR design on the resulting adaptive observer
Z(t) = AoZ(t) + Bug(t) + f(1). (1.14)

Assuming a known periodic exogenous input f, we obtain an optimal controller uy(t) of the
form

us(t) = —R™'B* (PZ(t) + r(t)), (1.15)

where P and r(t) depend on the LQR design parameters and on f(t). The corresponding
closed loop trajectory Z(t) converges exponentially to a periodic signal p(t). The overall
adaptive compensator (1.11) - (1.15) makes the closed loop trajectory of (1.8) converge to
a unique periodic signal p(¢) in the following sense

155 Q3 () — p(t))|x — 0  ast — oo

for some 8 > 0. If Q is invertible, z(t) converges exponentially fast to p(t).
To illustrate the above results we present some numerical results on our three examples
in section 5.

2 Positive Real Lemmas

The adaptive observer scheme is only applicable to positive-real systems and the key is a
positive real lemma. Just as in finite dimensions (1.5)-(1.6), in infinite dimensions it is
possible to have different versions corresponding to spectral factors of different dimensions.
We have found three useful versions. The first version is particularly useful for dissipative
systems with co-located actuators and sensors, and it was utilized in Demetriou and Ito
[10]. These systems are always positive-real, and the following lemma is trivial.

Lemma 2.1 Suppose that A is the infinitesimal generator of a contraction semigroup on
X and B € L(C™,X). Then Q =1 is a solution to the constrained Lyapunov equation for
xz € D(A)

(A2, Qa) + (Qz, Az) <0

B*Q = B*.

In the adaptive observer application, one also needs to suppose that A generates an expo-
nentially stable Cp-semigroup. An example satisfying Lemma 2.1 is the following.



Example 2.A Consider the diffusion equation

0: o
ot  0x2

y(t) = /0 b)) de

+ b(z)u(t); 2(0,t) =0 = z(1,1)

where b € Ly(0,1) = X.

We let i
h € L2(0,1) : h, — are absolutely continuous,
D) =3 dz
W € L2(0, 1) and h(O) =0= h,(].)
and define
an= %" o ne p(ay
 dx? )
Then A has compact resolvent, eigenvalues \, = —n?7?, n € N and eigenvectors ¢, =

V2sin(nmz), n € N, which form an orthonormal basis for Ly(0,1). A is exponentially
stable, self-adjoint and for x € D(A)

(z, Az) < —|l2|l?,

and it generates a contraction semigroup.

Finally, note that y(t) = (b, 2(-,t)) = z(-,t) and B = C*.

To treat systems for which the actuators and sensors were not co-located, the following
version was proven in Curtain, Demetriou and Ito [6].

Lemma 2.2 Suppose that A is self-adjoint, has compact resolvent, its eigenvalues {\,,n €
IN } are simple and its eigenvectors {¢pn,n € IN } form an orthonormal basis for X. Suppose
that b,c € X satisfy

(¢, ¢n)(b;pn) >0, neN

(c, bn)
nseuﬂl\)r b’ ¢”>

Then there exist 0 < Q = Q* € L(X), L € L(D(A), X) and p > 0 such that for x,y € D(A)
(A+puhz, Qy) + (@, (A + ul)y) = —(Lz, Ly)
(z,c) = (z, Qb).

Proof Show by direct substitution that the following operators satisfy the constrained
Lyapunov equation

< 0.

—

(2.1)

_ - (¢, bn) T
& =200+ M) (e b)) ? '
L=y ( o ) (@, dn) .
O



This lemma applies to Example 2.A, where we can take y = 72 — € for any € > 0.

The following example from Curtain, Demetriou and Ito [6] does not satisfy the condi-
tions of Lemma 2.1, but Lemma 2.2 does apply.
Example 2.B Consider the diffusion equation

0z 0%z 0z

z(0,t) =0, z(1,t) =0;

with output given by

1
y(t) :/ e “z(z,t)dz,
0
here b(z) = L on[0,3)
v ] 0 elsewhere °

Take X = L5(0,1) to be the Hilbert space with the weighted inner product

(f.9) = /0 " e=0% £ (2)g(z) da.

Then, defining

h : h, ﬁare absolutely continuous
D(Ap) = 2h

and d’h dh
Aoh = — —a— f D(A
oh 7?2 Y or h € D(Ay),
it is straightforward to show that Ag is self-adjoint with eigenvalues A, = ——Ojf —n?7? and

normalized eigenvectors ¢, (z) = v2e**/2sin(nrz), n € N . The set {¢,, n € N } forms
an orthonormal basis for X. Let

dnmy/2 (1 — e_%(—l)”)

4n272 + o2

Cn = (¢, ¢n) = ,neN

2nm

by = <b7 ¢n> = 4n272 + o2

So b,c, > 0 for all n and for certain constants m and M

dnm/2 (1 +e cos(™F) — 2 o sin(%))

Cn

m < sup < M.

n>11Un

So the assumptions of Lemma 2.2 are satisfied, @ given by (2.1) satisfies the constrained
Lyapunov equation (2.2) and it is boundedly invertible; L is also bounded.

Note that in both Lemmas 2.1 and 2.2 the L term will be unbounded in general, even
though B and C' are bounded, and that L maps into the state-space X. This is in contrast
to the usual finite-dimensional version for which L maps into the output space € ™. The
latter version is much harder to prove for infinite-dimensional systems and earlier versions
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in Balakrishnan [1], Curtain [3, 4] and Pandolfi [17] assumed very strong conditions on the
system, such as exact controllability. Here we extract some useful results from Curtain [5],
who assumes only mild conditions on the system operators (A, B, C).

First we need some extra notation:

Ho(7) = f:C¢ — Z and f is holomorphic and
> [flloc = sup R [/ (jw)llx < o0

f:@©¢§ — Z and f is holomorphic and

11113 = supaso [0 If (@ + jw)|5 dw < o0

Hy(Z) = {

f:(—=joo,joo) = Z and f is measurable and
Ly((—joo, joo); Z) = . 3

17112 = (25 11 () 3 dew) * < 00
Hy(Z) is a Banach space under the sup norm and Hz(Z) and Lz ((—jo0, joo); Z) are Hilbert
spaces under their || -[|2 norms. f € Hy(Z) has a limit to a function f € Lz((0, joo); Z) and
f is isomorphic to f with ||f||2 = || f||2. f and f are usually identified with each other and
with this identification H(Z) is a subspace of La ((—joo, joo); Z). We denote by Py, the
orthogonal projection of Hy(Z) in Lo((—joo, joo); Z).

The results depend on the Popov function II defined by

I(jw) = G(jw) + G(jw)*. (2.3)

Theorem 2.1 Suppose that A is the infinitesimal generator of an exponentially stable Cy-
semigroup on X, B € L(C™,X) and C € L(X,C™).

(a) If I(jw) > 0 and I1(jw) has invertible values for all w € R satisfying

| togt M)l g g my
5 a2 dw < 00 (2.4)

and ©
| tog* M) g g my
—OQ
14 w?
then there exists a spectral factor W € H*®(L(C' ™)) such that

dw < 00, (2.5)

(jw) = W(jw)'W(jw)  forweR (2.6)
(b) If there eists a Cy € L(D(A), €™) such that for = € X
Cw(sI — A~z € Hy(@™) (2.7)
and (see (2.16) Lemma 2.7 of Curtain [5])
Py, {W(s)~Ciw (sI — A) '} = C(sT - A) s (2.8)
where W (s)™ = W (=3)*, then
W(s) = Cw(sI — A)"'B, (2.9)
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and for © € D(A)

A*Qx + QAz = —Cy Cwx (2.10)
B*Qz = Cu, (2.11)

where @ € L(X) is the observability gramian of (A, B,Cw).

In general, (2.7) and (2.8) are very difficult to check, but in the case that A is a Riesz-spectral
operator we have the following verifiable conditions.

Lemma 2.3 Suppose that A has compact resolvent with eigenvalues {\,,n € IN } and
suppose that the eigenvectors {en,n € IN } form a Riesz basis for X and sup, . v {Re A} <
0. The following are sufficient conditions for the constrained Lyapunov equations (2.10),
(2.11) to have solutions Q € L(X) and Cyw € L(D(A), X).

(2)
Ch = Cwen = (W(=Xy) 1) *Cep; (2.12)
(13) Either A generates a holomorphic semigroup or there ezist numbers 0 < a < b and

a > 0 such that
alIm A\g|* < —Re A\, < b|lIm | (2.13)

(14) there exists M > 0 such that for h +iw € €+

> Cw(Ch)”
—AER(hw)

< Mh, (2.14)
c(ecm

where R(h,w) ={2 € C|0 < Rez < h,w —h <Imz<w+h}.

Conditions (i7) and (74i) ensure that Cy is an infinite-time admissible observation oper-
ator for T'(t), in the terminology of “well-posed” linear system (see Hansen and Weiss [11]).
Lemma 2.3 covers a large class of partial differential systems. We apply it to our previous
Examples 2.A and 2.B, both of which have the same structure. The transfer functions are
of the form

g(S) — Z <C, ¢n><b7 ¢n>

s+

n

where b, = (b, ¢,) and ¢, = (c, ) are both of order 1 for large n and A, ~ —n? in both
examples. Consequently, the analysis and the conclusions are the same.

Now o
. 2¢,bn An
M{jw) = Z ma

n=1
and since ¢, and b, are of the order of % for large n, we can estimate II(jw) ~ - and it
w?2
is not difficult to verify that (2.4) holds and II has a spectral factorization ((2.5) follows

from (2.4) since II(jw) takes scalar values). In Curtain [5] the estimate W (n2) > coust
n4

was obtained and so |C}j,| < const n~i. Now for our example, Cy will be bounded if
it is of the order n2*¢ for some positive ¢ and the admissibility condition (2.14) will be

7



satisfied if |C}},| < consty/n. So Cyy is unbounded, but admissible. Hence we have satisfied
all the conditions of Lemma 2.3 and there exist @ and Cy € L(D(A),C ™) satisfying the
constrained Lyapunov equations.

We remark that, using Lemma 2.1 or Lemma 2.2 on Example 2.A, we obtain two dif-
ferent Q1’s € L(X) satisfying the constrained Lyapunov equation (2.10), (2.11). Using
Lemma 2.2 on Example 2.B we also obtain a different Q2 € £(X) and Ly € L(D(A),X)
satisfying the constrained Lyapunov equation (2.10), (2.11). In fact, for these two examples
@1 and @2 are boundedly invertible and in section 3 we shall see that they are actually a
better choice for our adaptive observer application.

As already noted, Lemmas 2.1 and 2.2 only apply to special classes of SISO systems.
Lemma 2.3 applies to a much wider class of partial differential systems. Unfortunately,
Lemma 2.3 is not applicable to delay systems. In the following example we show how (2.7)
and (2.8) can be verified directly for a delay system.

Example 2.C Consider the delay system

z(t) = —az(t) — bz(t — 1) + u(t); a,b>0 (2.15)
y(t) = a(t) (2.16)
with the transfer function )
g(s) = STathe € Hy.

Now
I(jw) = g(jw) +g(jw)*
2(a + beos(w))
(a+bcos(w))? + (w — bsin(w))?}
>0 if a > |b|.

In this case, it is easy to find the spectral factor

_atped 9 2 B
W(s) = PRy ey o+ % =2a, af=h. (2.17)
W € Hy, and the candidate for Cy is
(Cwz) (t) = az(t) + Bz(t — 1). (2.18)

The delay system (2.15), (2.16) can be formulated on the state-space X = € & Ly(—1,0)
with generating operators defined by

Bu:<0>, C(}c(.)):r, (2.19)

( f7(~) ) € X|f is absolutely continuous,

%() € Ly(—1,0) and f(0) =7

A( " ) = ( - _d?f(_l) ) (2.20)

bl



(see Curtain and Zwart [8], chapter 2.4). We recall from Infante and Walker [12] that A
generates an exponentially stable semigroup if a — |b] > p > 0 for some positive constant
. While C and B are bounded operators, Cy is not. It is known that it is admissible
(Salamon, [20]), which is equivalent to satisfying (2.7), but we shall verify (2.7) directly.
The resolvent is given by (Curtain and Zwart, [8], Lemma 2.4.5)

_ T ([ ¢(0)
(sI — A7t ( 0 ) = ( o) ) (2.21)

0(6) = *(0) — [ O ()

0
<r — b/ol 6_5(“+1)f(,u)du) .

where

9(0) = Ats)

So

ch_A)l( 7(‘)) _ cw(gg((?))>=<ag<0)+ﬁg<—1)>

f.
_ ot pe T TZ 0 R Y
- 5 r+<1 AG) ) /_1 £(6)d8

0
- W(s)r—lr(l—bW(s))e_s/ =" £(6)do.

-1

r
f0)
and this is a consequence of the Paley-Wiener theorem: fEl e 7“0 £(0)dh is the Fourier
transform of f(6)1_1 g)-

Next we verify (2.8). Since the eigenvectors of A span X (see Curtain and Zwart [8]
Theorem 2.5.10), it suffices to verify (2.8) for each eigenvector

Now W € Hy, and e™* € Hy, and so Cyy(sI — A)™1 ( > € Hy if ff’l e *0f(0)do € H,

1
bn = ( Ane ) (2.22)
corresponding to the eigenvalue \,:
An) = (A +atbe™) =0 (2.23)
(see Curtain and Zwart [8], Theorem 2.4.6). Now
1 1
I—A) ¢, = I—A) ¢, = :
(s ) ¢n s— A\, ¢n and C(s ) " on s—
Next
1)\
N 7 a_}_ﬁes S—An
W(S) Cw(SI—A) 1¢n = A(—S) CW e)\ns
s— A\p
_ (a+Be)(a+pBe ) 1
N A(—s) s— A



Now the only pole of W (s)~Cy(sI — A) ¢, in Res <0 is s = \,, and so

An @ e_)‘"
Puy (W (s)~Co(sT — A)-1g} = (@FPe)atfer™) 1

A(=Ap) s—Ap
A2+ +afleM +e M) 1
N —\, + a + bern s — A

2a + b(eM + e M) 1
2a + b(eM +e M) s — )\,
from (2.17) and (2.23)

= C(sI—A)1¢, as desired.

In fact, it is easily verified that the solution to the constrained Lyapunov equation (2.10),

(2.11) is
I 0
o= )

For the general retarded system with vector-valued inputs and outputs, see Curtain, [5].

3 An Adaptive Observer: main results
The proposed state estimator is
Z(t) = AoZ(t) + Bu(t) + BU(t)y(t) + f(t),  #(0) = Zo, (3.1)

where #(t) is the state estimate at time ¢ and T'(t) is the adaptive estimate of the unknown
gain. In order to extract the adaptation rule for f‘(t), we use the Lyapunov redesign method
[14, 15] that has proved successful for finite-dimensional systems. In this section, we show
that the same adaptive observer that was proposed in Curtain, Demetriou and Ito [6] for
scalar (SISO) systems can be extended to the larger class of multivariable (MIMO) systems
considered in this paper.

Theorem 3.1 Consider the structurally perturbed system (1.1)-(1.3), where Ag is the gen-
erator of an exponentially stable semigroup on X, B € L(C™,X), C € L(X,C™), f(t) is
a known exogenous signal which is locally Bochner integrable, and T' is an unknown matriz
feedback gain. If there exist Q € L(X) and L € L(D(A),X) or L(D(A), C™) satisfying the
constrained Lyapunov equation for x € D(A)

(Ag+ul)"Qzr+ Q (Ao +pl)z = —L*Lx (3.2)
B*Qx = C,

then the state estimator defined by (3.1) and the adaptation rule with adaptation matriz
gain G = GT > 0 given by _
T(t) = GCe(t)yT(t)

_ (3.4)
I'0) =T,

have the following properties:
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(i) If u,y € Loo(0,00; @™), then T'(t), Z(t) and the estimation error e(t) = z(t) — Z(t)
are bounded in norm fort >0 and ||e%tQ% (z(t) —Z(t)) ||lx = 0 ast = o0 ;

(ii) If y € Loo(0,00; € ™) N Ly(0,00; € ™) then |le2t (2(t) — z(t)) ||x — 0 as t — oo ;

(iii) If the conditions in (it) hold and, in addition, the plant is persistently exciting, i.e.,
there exist Ty, 60 and €y such that for each sufficiently large t > O there exists t €

[t,t + To) such that
t~+(50
ﬁ yT (1)w dr
i

for every unit vector w € R™, then we can achieve parameter convergence, i.e.,

> €

I'(t) > T, as t — oo.

Proof (i) Consider the dynamics of the state error

é(t) = Aoe(t) + BUy(t) — BT (t)y(t)

~ (3.5)
= Ape(t) + BI'(t)y(t)
6(0) =Xy — .’/L‘\() = €9.- (3.6)
We propose the following dynamics for the parameter error I'(t) = I — I'(¢)
T(t) = —GCe(t)yT (t),
(" (" 1) .

['(0) =T — Ty = T.

First we need to examine the well-posedness of the coupled system (3.5), (3.7) which is,
in fact, a linear time-dependent system

ilg@)]:l Ag B[']y(t)Hg(t)] (3.8)
A GO T 0 T | '

The perturbation term D(t) : X @ € ™*™ — X @ € ™™ is given by

D(#) = l —GC[q]yT(t) B[‘(])y(t) ] ' (39)

So, if y € L (0,21;€C™), (3.8) has a unique solution given by

e(t) e
[ 2() ] = U(t,0) [ f‘; ] (3.10)

where U (t, s) is a mild evolution operator [7] defined for 0 < s < ¢ < ¢;. In fact, y(¢) defined
by (1.1)-(1.5) will always be in C(0,t1;€C ™) for w, f € L,(0,1;C™), p = 1,2 or co. In
general, e(t) will not be in D(Ay), even if ey € D(Ap). Sufficient conditions for e(t) € D(Ay)
are that y(t) € C1(0,t;; €™), which are very strong. However, we assume this initially to
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facilitate the Lyapunov argument. We examine the asymptotic properties of (3.10) using

the following Lyapunov functional for ( 12 )

V(e,T) = (e, Qe) + T {TTG7'T}, (3.11)

where @ is the solution to (3.2). Since e(t) € D(Ap) we may differentiate V' along solutions
of (3.8) for 0 <t < t; to obtain

. ~ ~ ~ T ~
Vie,I') = (Ape+ BT'y,Qe) + (Qe, Age + BT'y) + 2Tr {I‘ G_lP}

= —||Le|? — 2u{e, Qe) — 2(Ce)Tf‘y + 2Tr {y(C’e)Tf‘} (3.12)
using Lemma 2.1 (3.2), (3.3) and (3.7)
= —||Le||? — 2u(e, Qe) using (2.9) and bT'a = Tr(ab?).
We now integrate (3.12) from ¢ = 0 to ¢t = ¢ to obtain
~ ~ t1 t1
(e(tr). Qe(t)) + T {T7(0)G *T(t)} + [ ILe()Pdt+2u [ (Qelt),e(0) de

= <e(), Q€0> + Tr {ng_lfo} .

(3.13)

Notice that although we have assumed that eg € D(4g) and y € C1(0,%;; C™) to derive
(3.13), all terms make perfectly good sense for ey € X and y € C(0,t1;C™). Moreover,
(3.10) and the facts that supg<s<i<s, [|U(%,5)|| < oo, and that D(Ap) is dense in X, show

that (3.13) can be extended to all eg € X. We now extend (3.13) to all y € L (0,¢;,C™)
by appealing to Lemma, A.1 in the appendix, which shows that if we approximate y by a
sequence y, € C1(0,t;; ©™) satisfying

t1
[ 156) —wnls)Pds 0, asn s oo,
0

then there holds
sup |U(t,s) — Uyn(t,s)| — 0 as n — oo. (3.14)
0<s<t<ts

So the respective solutions to (3.8) satisfy

s (le(®) = en®lix + 0@ = Tu(®)]]) 0 asn — oo (3.15)

and this suffices to show that (3.13) holds for any y € Loo(0,¢1;€™) and eg € X. This
implies that T" € Ly (0, 00; € ™*™).
Next, we define ¢(t) := ||Q%e(t)||2 and deduce the following from (3.13)

t1 ~ ~
alt) + 2u/ f(s)ds < f(0) + Tr {TTG'To} . (3.16)
0
Equation (3.16) implies that q(t1) < e 2#1V(0) or equivalently
e Qe(tr)* < Q2o (3.17)
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Now t; can be chosen arbitrarily large and so ||e%tQ%e(t)||2 — 0 as t — oo.

Finally, since I'(¢) and y(t) are uniformly bounded in norm for ¢ > 0 and A, generates
an exponentially stable semigroup, (3.5) shows that e(t) is uniformly bounded in norm for
t > 0. Similarly, (2.3) shows that Z(¢) is uniformly bounded in norm for u € L4 (0, c0; C™)
and hence z(t) = e(t) + Z(t) has the same property.

(i1) If y € La(0,00;C™), then from (i), the forcing term BT(t)y(t) in (3.5) is in
Ly(0,00; X). This, together with the fact that Ay generates an exponentially stable semi-
group implies that e(t) — 0 as ¢ — oo (see Lemma 12 in Curtain and Oostveen [16]).

(#31) The parameter convergence is proven by applying the results in Baumeister et al in
[2] to equation (3.8). We discuss briefly the minor subtleties required to apply Definitions 2.1
and 3.3 and Theorem 3.4 of [2]. The definition of the (admissible) plant requires that
(BTy(t),¥)x| < v(y)|IT|l|4|x. Since the operator B is bounded and the output y €
Loo(0,00; € ™) we have that indeed the plant satisfies Definition 2.1 of [2] with v(y) =
Y|y|r.,- The persistence of excitation condition in Definition 3.3 of [2] takes the form of

t"+60
sup | [ (BLy(r). 4)dr| > o,
lpl<t |/t
for all I' e R™*™ with ||T'|| = 1, which simplifies to
'E—|—(5()
sup / yT (1)I'T (B*) dr| > «.
llpll<1 |/t
This finally becomes
f—|—50
ﬁ yT (t)wdr| > €.
7
for some w € R™ with unit norm. Then a direct application of Theorem 3.4 in [2] yields
the required result. This completes the proof of Theorem 3.1. O

4 Adaptive Compensators

In this section, we propose an adaptive compensator for the perturbed plant (1.1)-(1.3)
where f(t) is a known exogenous signal. We obtain results for f(t¢) a periodic signal and
for f € L2(0,00; X). First we apply output injection to obtain a modified control problem:

u(t) = up — T(8)y(t). (4.1)
This has the advantage of producing the new estimator dynamics

(t) = AoZ(t) + Bua(t) + f ()

(0) = o 42)

8 &)

(t)
(t)
t) for the system (4.2).

and the same error dynamics (3.8) for as before.

7N
—~

So it remains to design a controller us
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We use the LQR control design from Da Prato and Ichikawa [19]. Suppose that (A, B, C5)
is exponentially stabilizable and detectable and R = RT > 0 € £(T ™). We seek to minimize

the average cost
(4.3)

Jw) = T s [ (ICz @2 + | R Zu(t)|?) dt
T—ooT Jo 2

over all controls satisfying imz_, o0+ fOT |lu(t)||?dt < oo and for which the corresponding
closed loop trajectory is bounded on ¢ > 0. They showed that if f(¢) is periodic, the

minimizing control law is given by

us(t) = —R™'B* (PZ(t) + r(t)), (4.4)
where P = P* € L£(X) is the solution to the Riccati equation for x € D(Ay)
A} Pz + PApx — PBR™'B*Pz 4 C3Cex =0 (4.5)
and r(t) is the solution to
#(t) = (A5 — PBR™'B*) r(t) - Pf(t),  r(t) > 0ast— oc. (4.6)
Equation (4.6) has the solution
(4.7)

r(t) = /too Th(s — t)Pf(s)ds

where Tp(t) is the exponentially stable Cy-semigroup generated by A — BR™1B*
The closed loop trajectory converges exponentially fast to the periodic solution

p0)= [ Tl 5) ()~ BRB'r(s)) s,

—0o0

(4.8)

(4.9)

ie.,
hm e"H|Z(t, t0) — p(t)||x =0,

t—o0

where v is the decay rate of Tp(t).
In the case of a constant exogenous signal, f(t) = fo,

p(t) = — (Ao - BR_IB*P)_l A (AO - BR—lB*P) fo.
We note that if f € Ly(0, 00; X), then the feedback control law
up(t) = —R™'B*Pi(t)
has the effect of ensuring that e*!z(t) — 0 as t — oo (see Lemma 12 in Curtain and

Oostveen [16]).
We propose the following adaptive compensator for the case of a known periodic exoge-

nous input
#(t) = (4o - BR'B"P) 5(t) - BR'B'r(t) + f(t); (0) = o
#(t) = (A5 — PBR™'B") r(t) = Pf(t), r(t) >0ast— o
tf(t) = —R'B* (P&(t) +r(t) — T(t)y(t)
T(t) = GCe(t)y"(t),  T(0)=Ty

14



for our structurally perturbed plant (1.1)-(1.3).
In section 3 we showed that

1e51Q3 (x(t) — (1)) ||x — 0 as t — oo

independently of the choice of the control. So combining this with the results in this section,
we conclude that for the case of a known periodic input f(¢)

1€24Q3 (2(t) — 3(t)) | x — 0 as t — oo,
where 3 = min(v, &) and p(t) is given by (4.8). If f(¢) is in Ly(0, 00; X), then

1e51Q3 (z(t) — 7(1)) |x — 0 as t — oo.

5 Examples and Numerical Results

We present some numerical results for the three examples considered in section 2. For each
of these examples, there exists a solution Q € L(X) satisfying (3.2) for a certain p > 0,
and in all three cases () is invertible. Consequently, we can conclude that for the adaptive
observer (3.1) with adaptation rule (3.4)

le2* (z(t) — #(1)) | x = 0
and with the adaptive compensator of section 4
le” ((t) — p(t)) [lx — 0.

All the computations described below were carried out on a Digital Personal Work-
station 433 au-Series in the Mechanical Engineering Department at Worcester Polytechnic
Institute. A finite element Galerkin approximation scheme based on spline elements was
used for the spatial discretization of the two PDE’s similar to the one developed in [2].
The resulting finite dimensional ODE systems were integrated in time using a Fehlberg
fourth-fifth Runge-Kutta method. The delay system in Example 2.C was discretized using
the method presented in the paper by Ito and Kappel, [13]. The resulting evolution (finite
dimensional) system was similarly integrated using the Runge-Kutta code rkf45.f.
Example 2.A As was already mentioned in section 2, we can choose in this case y = 72 —¢
in (2.1) and define the operators @ and L via (2.2). Alternatively, when Lemma 2.1 is used,
we have Q = I and L = 0 with the same p. The input operator b(x) was chosen as

bx) :{ 1 on[0,1)

0 elsewhere

The unknown gain was chose as I' = 1 and as initial conditions we chose z(z,0) = sin(7x)
and Z(z,0) = cos(2mz) — 1. The exogenous input f(x,t) = 50x(o1)(z) sin(27t). The initial
guess for T'(0) = 0 with an adaptive gain of G = 20. Figure 1(a) depicts the time evolution
of the output state error Ce(t) = fol(z(:c, t)—Z(x,t))dz. The convergence to zero is achieved
within 0.5 seconds. The parameter estimate I'(¢) (dashed) and the actual value of T' = 1
are depicted in Figure 1(b). Parameter convergence is achieved in 4 seconds.
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Evolution of output error, Ce(t)
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Figure 1: Evolution of (a) output error and (b) parameter estimate T'(¢) (dashed) — actual
parameter I' (solid).

Example 2.B Equations (2.1) and (2.2) can be satisfied with y = %271'2—6 where the param-
eter a = 0.2. Initial conditions were set as z(z,0) = sin(nz) and Z(z,0) = —0.25sin(7z). A
constant in space and time exogenous function is implemented as f(x,t) = 50x[,1)(z) and

['(0) = 0 with G = 2. With these values of initial conditions, it is observed in Figure 2(a)
that the the output state error converges to zero in 3.5 seconds. Furthermore, the parameter
f(t) converges to the actual value I' = 1 in 4 seconds. as shown is Figure 2(b).
Example 2.C The plant parameters were chosen as a = 3, b = 1. In this case the solution

I 0

0 3+£V8)I |

The actual value of the parameter was I' = 0.4 with initial condition for its estimate

chosen as ['(0) = 0.2. The initial state was set at z(t — 1) = sin(4¢ — 1) — sin(—1) and the
state estimate as Z(t — 1) = 0.5 sin(4¢ — 1); thus 2(0) = sin(3) +sin(1) and Z(0) = 0.5 sin(3).
Here we had f(t) = 0 for the exogenous signal and chose an adaptive gain of G = 500. It is
observed from Figure 3(a) that the state estimate converges to the plant state in about 2
seconds. Parameter convergence is also achieved at about 5 seconds. For numerical results
for a multivariable example the reader is directed to [9].

to the constrained Lyapunov equations (2.10), (2.11) is Q =
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Appendix

Lemma A.1 Suppose that A generates a Cy-semigroup on the Hilbert space X and consider
the mild evolution operator U(t,s) generated by A+ ¢, Diyi(t), D; € L(X) and y; €
Loo(0,1). Let Up(t,s) be the evolution operator generated by A + ¥ Djy?(t), where for
each i yI'(t) is a sequence of functions in C*(0,t1) satisfying

t1
[ 1@ —w@Pa 0 asn oo
0

There holds

sup ||U(t,8) — Un(t,8)|lcix) — o0 as n — oo.
0<s<t<t:

Proof We only give a detailed proof for £k = 1, since the arguments extend readily to
any finite k. We recall from Curtain and Zwart [8] the defining equations for U(¢, s) and
Un(t,s):

t
U(t,s)r=T(t—s)+ / T(t — a)Dy(a)U (e, s)zda (A.1)
t
U (t, sz = T(t — s) + / T(t — ) Dyn (0)Un(a, s)zda (A.2)
and the estimate
[T (e, )| < Melom )t (A.3)
where |T(t)|| < Me*?, t>0, (A.4)

and  p = M|D||yllze(0,t2) > O-
Consider the following estimates obtained using (A.1) and (A.2)

[U(t,8) = Un(t,s)| < /:IIT(t—a)DIIIy(a)—yn(a)IIIU(avs)llda

t
+/ IT(¢ — @) Dlll|yn]| Lo U (e, 8) — Un(ex, s)||dr
S

IA

¢ t
1DI] [ Mestt=e) Ageltie=y(a) — y, (@) |da

t
+||D||||yn||Loo/ M= |U(a, s) — Un(a, s) || dar.
S
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Defining f,,(t,s) = e “9)||U(t,s) — U,(t, s)|| we obtain
t
fultis) < MEID] [ e (@) = yo(@)lda
S
t
HDgallie [ fales)da
S

w2l ([ lyte) - yn<a>|2da)% ([ e 9da)

t
HIDynlz.. [ fales)da

N

IA

1 t 3
= e 1} ([ yte) ~ pal@)Pda)

t
+C’2/ fnla, s)da
S
where C; and C5 only depend on ¢;.
Thus ¢
fn(t, S) < 2016u(t_s) ||y - yn||L2(0,t1) + 02/ fn(a’ S)dS

and differentiating with respect to ¢ for fixed s yields

df,, _,
Vo 1,5) < 200y — oy + Coflt, )

and y
2 (%M a(t,9)) < 20ape =) ly — |z 0,0)-

We integrate from ¢ to s noting that f,(s,s) = 0 to obtain

t
eicQtfn (t7 5) S QClue_us / e(H—CQ)ﬂd/BHy — Yn ||L2(0,t1)

S

2C _ _ _
= M—ilc’lge us (e(“ Cz)t — e(u 02)8) ||y - yn”Lz(O,tl)
and o
fn(tas) < rlc,/: (6(“_02)t — e(“_c2)5) ||y - ynHLg(O,tl)
and

U (L, ) — Un(t, s)|| < 2Cin [e(w+u)(t78) _ e(wﬂLCz)(t*S)]

== Cy ||y_yn||L2(0,t1)

which proves our claim.
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